Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 207(4): 1078-1086, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34341172

RESUMO

Emergency granulopoiesis, also known as demand-adapted granulopoiesis, is defined as the response of an organism to systemic bacterial infections, and it results in neutrophil mobilization from reservoir pools and increased myelopoiesis in the bone marrow. Indirect and direct initiating mechanisms of emergency granulopoiesis have been hypothesized. However, the detailed mechanism of hyperactive myelopoiesis in the bone marrow, which leads to granulocyte left shift, remains unknown. In this study, we report that TLR4 is expressed on granulo-monocytic progenitors, as well as mobilized human peripheral blood CD34+ cells, which account for 0.2% of monocytes in peripheral blood, and ∼ 10% in bone marrow. LPS, a component of Gram-negative bacteria that results in a systemic bacterial infection, induces the differentiation of peripheral blood CD34+ cells into myelocytes and monocytes in vitro via the TLR4 signaling pathway. Moreover, CD34+ cells directly responded to LPS stimulation by activating the MAPK and NF-κB signaling pathways, and they produced IL-6 that promotes emergency granulopoiesis by phosphorylating C/EBPα and C/EBPß, and this effect was suppressed by the action of an IL-6 receptor inhibitor. This work supports the finding that TLR is expressed on human hematopoietic stem and progenitor cells, and it provides evidence that human hematopoietic stem and progenitor cells can directly sense pathogens and produce cytokines exerting autocrine and/or paracrine effects, thereby promoting differentiation.


Assuntos
Granulócitos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Receptor 4 Toll-Like/metabolismo , Adaptação Fisiológica/fisiologia , Antígenos CD34/metabolismo , Medula Óssea/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Diferenciação Celular/fisiologia , Citocinas/metabolismo , Regulação da Expressão Gênica/fisiologia , Células Precursoras de Granulócitos/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Monócitos/metabolismo , Mielopoese/fisiologia
2.
Sci Rep ; 10(1): 11806, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678227

RESUMO

The molecular mechanisms involved in the terminal differentiation of erythroblasts have been elucidated by comparing enucleation and cell division. Although various similarities and differences between erythroblast enucleation and cytokinesis have been reported, the mechanisms that control enucleation remain unclear. We previously reported that dynein and microtubule-organizing centers mediated the polarization of nuclei in human erythroblasts. Moreover, the accumulation of F-actin was noted during the enucleation of erythroblasts. Therefore, during enucleation, upstream effectors in the signal transduction pathway regulating dynein or actin, such as cell division control protein 42 homolog (Cdc42), may be crucial. We herein investigated the effects of the Cdc42 inhibitor, CASIN, on cytokinesis and enucleation in colony-forming units-erythroid (CFU-Es) and mature erythroblasts (day 10). CASIN blocked the proliferation of CFU-Es and their enucleation in a dose-dependent manner. Dynein adopted an island-like distribution in the cytoplasm of non-treated CFU-Es, but was concentrated near the nucleus as a dot and co-localized with γ-tubulin in CASIN-treated cells. CASIN blocked the accumulation of F-actin in CFU-Es and day 10 cells. These results demonstrated that Cdc42 plays an important role in cytokinesis, nuclear polarization and nuclear extrusion through a relationship with dynein and actin filament organization during the terminal differentiation of erythroblasts.


Assuntos
Actomiosina/metabolismo , Diferenciação Celular , Eritroblastos/citologia , Eritroblastos/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Biomarcadores , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Imunofluorescência , Expressão Gênica , Humanos , Imuno-Histoquímica , Proteína cdc42 de Ligação ao GTP/metabolismo
3.
Exp Hematol ; 72: 14-26.e1, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30797950

RESUMO

More than 2million human erythroblasts extrude their nuclei every second in bone marrow under hypoxic conditions (<7% O2). Enucleation requires specific signal transduction pathways and the local assembly of contractile actomyosin rings. However, the energy source driving these events has not yet been identified. We examined whether different O2 environments (hypoxic [5% O2] and normoxic [21% O2] conditions) affected human CD34+ cell erythroblast differentiation. We also investigated the regulatory mechanisms underlying energy production in erythroblasts during terminal differentiation under 5% or 21% O2 conditions. The results obtained revealed that the enucleation ratio and intracellular levels of adenosine triphosphate (ATP), lactate dehydrogenase (LDH) M3H, and hypoxia-inducible factor 1α in erythroblasts during terminal differentiation were higher under the 5% O2 condition than under the 21% O2 condition. We also found that the enzymatic inhibition of glyceraldehyde 3-phosphate dehydrogenase and LDH, key enzymes in anaerobic glycolysis, blocked the proliferation of colony-forming units-erythroid and enucleation of erythroblasts, and also reduced ATP levels in erythroblasts under both hypoxic and normoxic conditions. Under both conditions, phosphorylation of the Ser232, Ser293, and Ser300 residues in pyruvate dehydrogenase (inactive state of the enzyme) in erythroblasts was involved in regulating the pathway governing energy metabolism during erythroid terminal differentiation. This reaction may be mediated by pyruvate dehydrogenase kinase (PDK) 4, the major PDK isozyme expressed in erythroblasts undergoing enucleation. Collectively, these results suggest that ATP produced by anaerobic glycolysis is the main source of energy for human erythroblast enucleation in the hypoxic bone marrow environment.


Assuntos
Trifosfato de Adenosina/biossíntese , Eritroblastos/metabolismo , Glicólise/fisiologia , Anaerobiose/fisiologia , Antígenos CD34/metabolismo , Eritroblastos/citologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lactato Desidrogenase 5/metabolismo , Fosforilação/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo
4.
Biochem Biophys Res Commun ; 479(4): 860-867, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27671200

RESUMO

Lactate dehydrogenase (LDH) is a glycolytic enzyme that catalyzes the final step of glycolysis and produces NAD+. In somatic cells, LDH forms homotetramers and heterotetramers that are encoded by two different genes: LDHA (skeletal muscle type, M) and LDHB (heart type, H). Analysis of LDH isozymes is important for understanding the physiological role of homotetramers and heterotetramers and for optimizing inhibition of their enzymatic activity as it may result in distinct effects. Previously, we reported that hydroxychloroquine (HCQ) inhibited LDH activity, but we did not examine isozyme specificity. In the present study, we isolated heterotetrameric LDH (H2M2) from swine brain, determined its kinetic and thermodynamic properties, and examined the effect of HCQ on its activity compared to homotetrameric LDH isozymes. We show that: (1) the Km values for H2M2-mediated catalysis of pyruvate or lactate were intermediate compared to those for the homotetrameric isozymes, M4 and H4 whereas the Vmax values were similar; (2) the Km and Vmax values for H2M2-mediated catalysis of NADH were not significantly different among LDH isozymes; (3) the values for activation energy and van't Hoff enthalpy changes for pyruvate reduction of H2M2 were intermediate compared to those for the homotetrameric isozymes; (4) the temperature for half residual activity of H2M2 was closer to that for M4 than for H4. We also show that HCQ had different affinities for various LDH isozymes.


Assuntos
L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Suínos/metabolismo , Animais , Encéfalo/enzimologia , Inibidores Enzimáticos/farmacologia , Hidroxicloroquina/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , L-Lactato Desidrogenase/antagonistas & inibidores , Estrutura Quaternária de Proteína , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Termodinâmica
5.
J Biochem ; 160(5): 299-308, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27311998

RESUMO

It is widely believed that enzymatic activities in ectothermic organisms adapt to environmental temperatures. However, to date, no study has thoroughly compared multiple thermodynamic enzymatic characteristics across species living in dramatically different environments. To start to address this gap, we compared the characteristics of lactate dehydrogenase (LDH) purified from the muscles from slime flounder Microstomus achne white muscle and bovine skeletal muscle (bM4) and heart. The K m and V max for pyruvate reduction were about three times higher for M. achne LDH than bM4 Surprisingly, maximum LDH activity was observed at ∼30 °C and ∼50 °C for M. achne and bovine LDHs, respectively, suggesting that the maximum enzymatic activity of LDH is set at a temperature ∼20 °C higher than environmental or body temperature across species. Although K m and V max values of these LDHs increased with temperature, the V max/K m ratio for M. achne LDH and bM4 was independent. Differential scanning calorimetry and enthalpy change measurements confirmed that M. achne and bovine muscle-specific LDHs shared similar properties. Based on the present findings and previous reports, we hypothesize that the function and thermodynamic properties of muscle LDH are highly conserved between a teleost adapted to cold, M. achne, and bovine.


Assuntos
Aclimatação/fisiologia , Proteínas de Peixes , Linguado/metabolismo , L-Lactato Desidrogenase , Proteínas Musculares , Animais , Bovinos , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Especificidade da Espécie
6.
Biochem Biophys Res Commun ; 473(4): 999-1004, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27049308

RESUMO

Hydroxychloroquine (HCQ) is a widely used drug in the treatment of autoimmune diseases, such as arthritis and systemic lupus erythematosus. It has also been prescribed for the treatment of malaria owing to its lower toxicity compared to its closely related compound chloroquine (CQ). However, the mechanisms of action of HCQ in erythrocytes (which bind preferentially this drug) have not been documented and the reasons underlying the lower side effects of HCQ compared to CQ remain unclear. Here we show that, although the activity of erythrocyte lactate dehydrogenase (LDH), but not GAPDH, was inhibited by both HCQ and CQ in vitro, LDH activity in erythrocytes incubated with 20 mM HCQ was not significantly reduced within 5 h in contrast to CQ did. Using HCQ coupled Sepharose chromatography (HCQ-Sepharose), we identified Band 3, spectrin, ankyrin, protein 4.1R and protein 4.2 as HCQ binding proteins in human erythrocyte plasma membrane. Recombinant cytoplasmic N-terminal 43 kDa domain of Band 3 bound to HCQ-Sepharose and was eluted with 40 mM (but not 20 mM) HCQ. Band 3 transport activity was reduced by only 23% in the presence of 20 mM HCQ. Taken together, these data demonstrate that HCQ binds to the cytoplasmic N-terminal domain of Band 3 in human erythrocytes but does not inhibit dramatically its transport activity. We hypothesize that the trapping of HCQ on Band 3 contributes to the lower side effects of the drug on energy production in erythrocytes.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Hidroxicloroquina/farmacologia , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/enzimologia , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/metabolismo , Hidroxicloroquina/toxicidade , L-Lactato Desidrogenase/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...